0.00 $
0 item(s)
Taking three cubes, we successively cut them with a plane and got seven different sections:
- two regular triangles, differing in their size;
- square;
- rectangle;
- diamond;
- pentagon;
- regular hexagon.
Here it can be seen on video.
As you probably guess, this is not all possible polygons obtained by cutting a cube.
But if the classic cube cuts seemed boring to you, then here is the story told in 1693 by the English mathematician John Wallis.
Prince Rupert of Palatinate argued that in a cube, you could cut a hole large enough to drag a cube of the same size through it.
Prince Rupert of Palatinate (germ. Ruprecht) (1619–1682).
Rupert is one of the founders of the Hudson's Bay Company and its first manager. In 1646–1648, Rupert led British units as part of the French army. Also, he was a talented inventor and an excellent engraver who introduced the mezzotint technique in England.
In one of the cubes, you need to make a through-hole.
To fit a cube into this hole, the size of the hole must be suitable.
Which one? Most likely, this should be the smallest hole area. In this case, the hole size will be square and equal to the area of the cube side. In such a square hole, a cube can pass.
We decided on the shape of the hole - it is a square equal to the cube side.
Now let's try to rotate the second cube to make a square hole inside the first (green) one. The complexity of the problem is that it is an internal opening, and the outer walls of the cut cube would be inseparable.
A star is an image of divine idea and will; due to them, our Light and Universe were created and...
The monument to the “Truncated large dodecahedron” polyhedron was discovered in Obninsk (Russia)...
Archimedes, a scientist from Ancient Greece, discovered thirteen types of polyhedra, now called...
One of the most famous magazines in Russia - popularizers of science with 115 years of history-...
With the same pattern repeating on each polyhedrons face, it is possible to create an alternating...