0.00 $
0 item(s)
An affirmative answer to this question was given back in 1807. In a more general form, it sounded like this: "Any two polygons of the total area should have a common cut." This is the Boyle-Gervin theorem, proved in 1807. If we have a triangle and a square and know that their surfaces are the same, cutting the triangle into several polygons, we can fold the square like a mosaic.
But here is a more difficult question. Is it possible to cut so that all parts are connected in a continuous chain?
Dudeny dissection (by the author), made in the form of animation, shows us how the triangle is converted into a square, and then into a hexagon and back into a triangle (Wikipedia animation movie was used).
Initially, the task of cutting a triangle was proposed by Henry Dudeney in the form of a puzzle and published in the Daily Mail newspaper (issues of February 1 and 8, 1905). Later this puzzle was included in the book "Canterbury puzzles" and, to this day, is included in the hundred best puzzles of "all time."
The original text is as follows:
Many attempts were made to induce the Haberdasher, who was of the party, to propound a puzzle of some kind, but for a long time without success. At last, at one of the Pilgrims' stopping-places, he said that he would show them something that would "put their brains into a twist like unto a bell-rope." As a matter of fact, he was really playing off a practical joke on the company, for he was quite ignorant of any answer to the puzzle that he set them. He produced a piece of cloth in the shape of a perfect equilateral triangle, as shown in the illustration, and said, "Be there any among ye full wise in the true cutting of cloth? I trow not. Every man to his trade and the scholar may learn from the varlet and the wise man from the fool. Show me, then, if ye can, in what manner this piece of cloth may be cut into four several pieces that may be put together to make a perfect square."
Some of the more learned of the company found a way of doing it in five pieces, but not in four. But when they pressed the Haberdasher for the correct answer, he was forced to admit that he knew no way of doing it in any number of pieces after much beating about the bush. "By Saint Francis," saith he, "any knave can make a riddle methinks, but it is for them that may rede it aright." For this, he narrowly escaped a sound beating. But the curious point of the puzzle is that I have found that the feat may really be performed in so few as four pieces and without turning over any piece when placing them together. The method of doing this is subtle, but I think the reader will find the problem a most interesting one.
The figures show how you can cut a triangular piece of matter into 4 parts. Then, how to put the resulting pieces into a square.
9. Put the segment JK equal to BE.
10. From point D, lower the perpendicular to EJ with the base at L.
11. From point K, we drop the perpendicular to EJ with the base at M.
You can make such an entertaining puzzle, which allows you to convert a regular triangle into a square by an unbroken chain of polygons, independently from paper. But to make it movable, it must be not a flat, but a three-dimensional construction. Therefore, each of the polygons receives the height and is transformed into a prism.
We suggest you download the net parts in the form of the 4th prism.
For each "piece" of the puzzle, we glue together a separate prism, and then we connect the individual prisms in the form of hinges.
Imagine a historic building, an architectural ensemble that is decorated with stellated polyhedra. And...
ARCHIMEDES (287 - 212 BC) - Ancient Greek mathematician, physicist, and mechanic. Archimedes is...
Find a gift for the schoolboy that will be interesting, useful, and not ruin the family budget - is...
When we demonstrate polyhedra assembled from the Magic Edges set, people often ask the same question...
There are five regular polyhedra: a tetrahedron, an octahedron, a cube (also known as a...
Summer is the time you want to spend outdoors. At the desk, the children will sit down in...