0.00 $

0 item(s)

Recall that the polyhedron triacontahedron is a geometric solid of thirty rhombuses. Each rhombus has a golden ratio.

Now let's get back to how to get a stellated rhombic triacontahedron (or rhombic hexecontahedron).

If on each of the thirty faces in the form of the initial solid, we construct rays in two rhombuses, then the final combination of 2x30 rhombuses will give us a 60-sided facet polyhedron - a rhombic hexecontahedron.

This polyhedron gained particular popularity after the Wolfram|Alpha project team made it a registered trademark and symbol of their product.

The www.wolframalpha.com project itself is a set of algorithms that solve mathematical problems and find answers in databases. Some people compare it to search engines like Google or Yandex. But the creators of the Wolfram|Alpha project adhere to a different point of view, that this is an algorithm that allows you to translate a request from a human language into a format convenient for computer processing. It is also believed that Wolfram|Alpha is one of the prototypes of artificial intelligence.

The author of the project, Stephen Wolfram, wrote a **detailed story about how the polyhedron** - the rhombic hexecontahedron - became the symbol of his product.

Also, Stephen Wolfram describes the polyhedron model in detail and takes a long excursion into history. He also gives various options for manufacturing a polyhedron model, including from shape nets.

You can purchase an original kit for creating a model on the developer's website:

https://store.wolfram.com/view/misc/popup/spikey_kit

For our part, **we offer another option for making a model, which, in our opinion, can be very convenient.**

To assemble a polyhedron, you need to download a **shape net**:

Print the shape net on five A4 sheets.

For work, we immediately chose to design double-sided paper in red.

For convenience, it is recommended to draw the fold lines with a ballpoint pen. This will speed up the bending process of the petals.

To draw fold lines, you will need a pen, a ruler, and a few plain paper sheets to create a soft-surface lining.

The ball on the tip of the ballpoint pen, drawing a line, creates pressure on the paper and pushes it slightly.

The resulting fold line is quite comfortable.

But, if you wish, you can refuse this stage of work and go straight to the next one.

Each detail should be cut along the contour using ordinary scissors. Then we bend all the flaps inward and make folds between future faces.

We glue each part, as shown in the figure.

Then glue the remaining flaps.

You should get 20 identical parts.

We glue the parts together through the side triangular surface.

An example of two pieces glued together.

We glue the third part.

We glue two more parts and get a base of five parts.

We turn the base over.

We glue five more parts.

We glue five more parts.

We glue four more parts. In the final stage, we glue the last 20th part.

We get the finished model of the polyhedron.

© polyhedr.com 12/09/2020

Is it possible to conduct additional school classes in geometry collecting models of polyhedra? Of...

Young British designer, Richard Sweeney, creates amazing paper sculptures. Interestingly, regular...

Boxes for Big Mac and potatoes familiar to everyone from childhood, a glass for Coca-Cola is also...

In the second half of the 19th century, a new teaching method was born in US schools - the project...

According to some spiritual teachings, a polyhedron already familiar to us — a compound of two...

One can specify the following mathematical characteristics in each of the five Platonic solids: 1....

Polyhedra can be an ornament to your home, creating a zest in the...